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SIEVE METHODS IN GROUP THEORY III: Aut(Fn)

ALEXANDER LUBOTZKY AND CHEN MEIRI

Abstract. Let π : Aut(Fn) → Aut(Zn) be the epimorphism induced by the
isomorphism Zn ∼= Fn/F

′

n and define Tn := kerπ. We prove that the subset of Tn
consists of all non-iwip and all non-hyperbolic elements is exponentially small.

1. Introduction

Let Γ be a finitely generated group. A subset Σ ⊆ Γ is called admissible if it is
symmetric (i.e. Σ = Σ−1) and the Cayley graph Cay(Γ,Σ) is not bi-partite. Fix
an admissible generating subset Σ of Γ. If Z ⊆ Γ then the asymptotic behavior of
the probability ProbΣ(wk ∈ Z) that the kth-step of a random walk on Cay(Γ,Σ)
belongs to Z can be used to ‘measure’ the density of Z (the random walk begins at
the identity). In fact,

ProbΣ(Wk ∈ Z) :=
|{(s1, . . . , sk) ∈ Σk | s1 · · · sk ∈ Z}|

|Σ|k

We say that Z is exponentially small with respect to Σ if there exist constants c, α > 0
such that ProbΣ(wk ∈ Z) ≤ ce−αk for all k ∈ N. The set Z is called exponentially

small if it is exponentially small with respect to all admissible generating subsets.
One of the first applications of the large sieve method in group theory was a

result of Rivin [Ri1] and Kowlaski [Ko]. They proved that the set of non-pseudo-
Anosov elements in the Mapping Class Group, MCG for short, is exponentially
small (see also [Ma]). Their proof uses the homomorphism form the MCG to the
symplectic group which is induced by the action on the homology of the surface.
Hence, the proof tells us nothing about the Torelli group which is the kernel of
this homomorphism. Kowlaski asked [Ko, page 135] if the same result also holds
for the Torelli subgroup. An affirmative answer to this question was given in [MS]
and in [LuMe2]. The main idea in both proofs was to use the action of the Torelli
group on the homologies of double covers of the surface in order to construct similar
homomorphisms from the Torelli group to symplectic groups.
There is a lot of similarity between the MCG and the automorphism group

Aut(Fn) of a non-abelian free group Fn of rank n. In particular, there are two
possible natural analogue notions to pseudo-Anosov elements: iwip elements or hy-
perbolic elements (see Section 4 for definitions and [KM] for a discussion on the
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analogies). Let π : Aut(Fn) → Aut(Zn) be the epimorphism induced by the isomor-
phism Zn ∼= Fn/F

′

n. The subgroup Tn := ker π is an analog of the Torelli group and
it is finitely generated for n ≥ 3 by a result of Magnus, while for n = 2 it is just the
group of inner automorphisms Inn(F2).
The analogy between MCG (respectively the Torelli group) and Aut(Fn) (resp.

Tn) suggests that the subset of Aut(Fn) (resp. of Tn) consisting of all non-iwip
and all non-hyperbolic elements is exponentially small. Rivin and Kapovich proved
that this in indeed the case for Aut(Fn) [Ri2]. In this note we show that the same
result also holds for Tn. The idea of the proof is similar to the one we used for the
Torelli group case: we investigate the actions of Tn on the abelizations of finite index
subgroups of Fn. For this we use a Theorem of Grunewald and the first author which
analyzes these action [GL1]. In fact, the situation for the automorphism group case
is somewhat less ‘symmetric’ then the Torelli group case (see footnote 3) and we
have to consider also the action on subgroups of index three (and not just the action
on subgroups of index two which are the analog of double covers). Thus, unlike the
case of the MCG for which all the representations studied (in [LuMe2] or [MS]) were
naturally defined over Z, we have to consider here representations onto a subgroup
H of GLn−1(Z[ξ]) where ξ is a non-trivial cubic root of unity. This brings some new
challenges. For example, along the way we have to prove (see Proposition 2.4 below)
that the set

{g ∈ H | ∃m ≥ 1 such that the characteristic polynomial of gm belongs to Z[t]}

is exponentially small. This is proved in Section 2. In Section 3, we describe the
Grunewald-Lubotzky theorem in the form needed here, while in Section 4, we discuss
iwip and hyperbolic elements and prove the main result of this paper- Theorem 4.5.

2. Characteristic polynomials

For a number field K and an element g ∈ GLn(K) let fg := det(t Id−g) denote
the characteristic polynomial of g and let Rg denotes the set of roots of fg. Let ξ
be a non-trivial third root of unity.
Fix a subgroup Γ of GLn(Z[ξ]) which is commensurable to SLn(Z[ξ]). The goal

of this section is to show that that set

{g ∈ Γ | ∃m ≥ 1 such that fgm ∈ Z[t]}

is exponentially small.
Let us recall and set up the notations of the process of “restriction of scalars”.

We can view Z[ξ] as a free Z-module of rank 2 with basis 1, ξ. If b ∈ Z[ξ] then
the map x 7→ bx is a Z-homomorphism of Z[ξ]. Thus, we have an embedding
ψ : Z[ξ] →֒ M2×2(Z) (the embedding depends on the chosen basis of Z[ξ]). The
image of Z under this embedding is the set of scalar matrices. Moreover, an element
x ∈ Z[ξ] belongs to Z if and only if the (2, 1)-coordinate of ψ(x) equals to zero. We
can view M2n×2n(Z) as the ring of matrices of size n × n with entries in M2×2(Z).
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Thus, ψ induces the restriction of scalars embedding ϕ : Γ →֒ GL2n(Z).
1 Explicitly,

if g ∈ Γ then ϕ(g)2(i−1)+k,2(j−1)+l = ψ(gi,j)k.l for every 1 ≤ i, j ≤ n and every
1 ≤ k, l ≤ 2. In particular, the trace of an element g ∈ Γ belongs to Z if and only if∑n

i=1 ϕ(g)2(i−1)+1,2(i−1)+2 = 0. Let G(C) be the Zariski-closure of ϕ(Γ) in GL2n(C).
The connected component G◦(C) of G(C) is isomorphic to SLn(C)× SLn(C) and in
particular it is semisimple.

Lemma 2.1. The subset Z := {g ∈ Γ | trace(g) ∈ Z} is exponentially small in Γ.

Proof. The set ϕ(Z) is contained in the subvariety

V (C) := {A ∈ G(C) |
n∑

i=1

A2(i−1)+1,2(i−1)+2 = 0}

where Ai,j is the (i, j)-coordinate of A. It is not hard to see that V (C) does not
contain any coset of G◦(C). Proposition 2.2 below completes the proof. �

Proposition 2.2 (see Proposition 5.3 of [LuMe1]). Let Γ be a finitely generated

subgroup of GLn(Q) such that connected component G◦(C) of its Zariski-closure is

semisimple. Assume that V (C) is a variety defined over Z and that V (C) does not

contain any coset of G◦(C). Then, V (C) ∩ Γ is exponentially small in Γ.

Another consequence of Proposition 2.2 is:

Lemma 2.3. The subset

W := {g ∈ Γ | There exists m ≥ 1 such that fϕ(gm) has multiply roots }

is exponentially small in Γ.

Proof. Let g ∈ Γ and assume that the characteristic polynomial of some positive
power of ϕ(g) has multiply roots. Let m ≥ 1 be the minimal positive integer for
which fϕ(g)m has multiply roots. Then, there is a root x of fϕ(g) and a primitive
m-root of unity ζ such that ζx is also a root of fϕ(g). Thus, ζ belong to the normal
closure Kϕ(g) of Q(Rϕ(g)) (recall that Rϕ(g) is the set of roots of fϕ(g)). However,
[Kϕ(g) : Q] ≤ (2n)! and there are only finitely many roots of unity which belong
to an algebraic extension of Q of bounded degree. So, m is bounded by some
constant cn which depends only on n. In particular, if the characteristic polynomial
of some positive power of ϕ(g) has multiply roots then fϕ(g)cn! has multiply roots. A
polynomial has multiply roots if and only if its discriminant is equal to zero. Define
W (C) := {A ∈ G(C) | disc(fAcn!) = 0}. It is not hard to verify that the variety
W (C) does not contain any cost of G◦(C). Proposition 2.2 completes the proof. �

We are ready to prove the main proposition of this section:

1There exists h ∈ GL2n(Q(ξ)) and an automorphism α of the algebraic closure of Q such that
α(ξ) = ξ−1 and hϕ(g)h−1 = diag(g, α(g)) for every g ∈ Γ (where α(g)i,j := α(gi,j)).
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Proposition 2.4. The set

T := {g ∈ Γ | ∃m ≥ 1 such that fgm ∈ Z[t]}

is exponentially small in Γ.

Proof. In light of Lemmas 2.1 and 2.3 it is enough to show that T ⊆ Z ∪W . For
every g ∈ Γ the following holds:

1. Rg ⊆ Rϕ(g).

2. If α ∈ Aut(Q̃) then α(Rg) ⊆ Rϕ(g) (Q̃ is the algebraic closure of Q).2

3. fg ∈ Z[t] if an only if α(Rg) = Rg for every α ∈ Aut(Q̃).

Assume that g 6∈ Z ∪W . Then as g 6∈ Z, Condition 3 shows that α(Rg) 6= Rg for

some α ∈ Aut(Q̃). In turn, conditions 1 and 2 together with the fact that g 6∈ W
imply that α(Rgm) 6= Rgm for every m ≥ 1. The other direction of condition 3 then
shows that fgm 6∈ Z[t] for every m ≥ 1. �

3. Grunewald-Lubotzky Theorem

Fix n ≥ 3 and a basis x1, . . . , xn of Fn. For s ≥ 2, let Ks be the kernel of the
homomorphism form Fn to Z/sZ which sends xn to 1 and x1, . . . , xn−1 to 0. Denote
yk,i := x−i

n xkx
i
n for 0 ≤ i ≤ s− 1 and 1 ≤ k ≤ n− 1. Then, the set

{yk,i | 0 ≤ i ≤ s− 1 ∧ 1 ≤ k ≤ n− 1} ∪ {xsn}

is a free basis of Ks.
There is a natural homomorphism α : Ks/K

′

s → Fn/F
′

n. Since Fn/Ks is abelian
every ϕ ∈ Tn preserves Ks. Thus, ϕ also acts as an automorphism on Ks/K

′

s and
as the identity on Fn/F

′

n. These actions commute with α, i.e., with a little abuse of
notation we have ϕ ◦ α = α ◦ ϕ. In particular, ϕ preserves kerα. Denote

Ls := 〈yk,iy
−1
k,i+1 | 0 ≤ i ≤ s− 2 ∧ 1 ≤ k ≤ n− 1〉.

Then, Ls is a free factor of Ks and kerα = LsK
′

s/K
′

s.
The abelian group Ks/K

′

s has a structure of a Z[ξs]-module where ξs be a s
th-root

of unity. For k ∈ Ks, ξs(kK
′

s) = x−1
n kxnK

′

s. The subgroup LsK
′

s/K
′

s is in fact a free
Z[ξs]-submodule with a basis

Ds := {dk | 1 ≤ k ≤ n− 1}

where dk := yk,0y
−1
k,1K

′

s.
Every ϕ ∈ Tn acts as an automorphism on LsK

′

s/K
′

s and preserves its structure
as a Z[ξs]-module. The group of Z[ξs]-automorphisms of LsK

′

s/K
′

s is isomorphic to
GLn−1(Z[ξs]) where the isomorphism is depend on the basis chosen for LsK

′

s/K
′

s.
Thus, there exists a homomorphism ρs : Tn → GLn−1(Z[ξs]) with respect to the

above basis Ds.

Theorem 3.1 (Grunewald-Lubotzky [GL1]). Fix s ≥ 2 and let ρs : Tn → GLn−1(Z[ξs])
be the above homomorphism. Then ρ(Tn) is commensurable with SLn−1(Z[ξs]).

2In fact, if α ∈ Aut(Q̃) and α(ξ) 6= ξ then Rg∪α(Rg) = Rϕ(g) while if α(ξ) = ξ then Rg = Rα(g).
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For s = 2 the above theorem in similar to Proposition 3 of [LuMe2]. However, we
shall see in the next section that unlike in the Torelli group case where the analog
of ρ2 suffices, in the Tn case we also have to consider ρ3.

4. Iwip and hyperbolic elements

We start by recalling the definitions of iwip and hyperbolic elements. A more
detailed discussion about these elements and the analogy to pseudo-Anosov elements
in the mapping class group can be found in [KM]. An element g ∈ Aut(Fn) is
called reducible if there are non-trivial proper subgroups H1, . . . , Hk < Fn such
that H1 ∗ · · · ∗ Hk is a free factor of Fn and g(Hi) is conjugate to Hi+1 for every
1 ≤ i ≤ k where the addition in the subscript is modulo k. An element g ∈ Aut(Fn)
is called irreducible with irreducible powers, or iwip for short, if for every m ≥ 1 the
automorphism gm is not reducible. Hence, if g ∈ Aut(Fn) is not iwip then there
are m ≥ 1 and a non-trivial proper free factor H such that gm(H) is conjugate to
H . Rivin [Ri1] proved that the set of non-iwip elements of Aut(Fn) is exponentially
small.
An element g ∈ Aut(Fn) is called hyperbolic if for every m ∈ N+, the element gm

does not fix any conjugacy class of a non-trivial element. Rivin and Kapovich [Ri2]
proved that the set of non-hyperbolic elements of Aut(Fn) is exponentially small.
Note that both properties, iwip and hyperbolic, are invariant by multiplication

by inner automorphisms, so can be thought (and usually are thought) as properties
of elements of Out(Fn) = Aut(Fn)/ Inn(Fn). As T2 = Inn(F2), there is no interest
in studying these properties in the case n = 2 and we therefore assume that n ≥ 3.
The proofs of the above results use the homomorphism π : Aut(Fn) → Aut(Zn)

so they give us no information on the subgroup Tn := ker π. However, these results
for Tn can be obtained by looking at covers.

Proposition 4.1. There are homomorphisms ρ1, . . . , ρ2n−1 : Tn → GLn−1(Z) and

ψ1, . . . , ψ3n−1 : Tn → GLn−1(Z[ξ]) where ξ is a non-trivial third root of unity such

that:

1. For every 1 ≤ i ≤ 2n − 1, ρi(Tn) is of finite index in GLn−1(Z).
2. For every 1 ≤ i ≤ 3n − 1, ψi(Tn) is commensurable with SLn−1(Z[ξ]).
3. If ϕ ∈ Tn is not iwip then there are m ≥ 1, 1 ≤ i ≤ 2n − 1 and 1 ≤ j ≤

3n − 1 such that the characteristic polynomial of ρi(ϕ
m) is reducible or the

characteristic polynomial of ψj(ϕ
m) belongs to Z[t].

Proof. We use the notation of the previous section. Assume that ϕ ∈ Tn is not iwip.
Then there is a free basis x1, . . . , xn of Fn and two natural numbers 1 ≤ l < n and
m ≥ 1 such that ϕm preserve the Fn-conjugacy class of H := 〈x1, . . . , xl〉.

3 Recall
that for s ≥ 2 we defined Ks to be the kernel of the homomorphism form Fn to

3The fact that ϕm preserves 〈x1, . . . , xl〉 does not imply that it also preserves 〈xl+1, . . . , xn〉 so
unlike the Torelli group case in [LuMe2] we cannot assume that l < n− 1. This is the reason why
in the current paper we have to consider triple covers and not only double covers.
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Z/sZ which sends xn to 1 and x1, . . . , xn−1 to 0. Thus, Ks is a subgroup of index
s in Fn so the Fn-conjugacy class of H splits into at most s Ks-conjugacy classes.
Hence, ϕ6m preserves the K2-conjugacy class and the K3-conjugacy class of H .
From now on let s = 2 or 3 and recall that yk,i := x−i

n xkx
i
n and that ξs is a

non-trivial s-root of unity. Since ϕ ∈ Tn and Fn/Ks is abelian, ϕ(xn)x
−1
n ∈ Ks and

ϕ(yk,1)K
′

s = x−1
n ϕ(yk,0)xnK

′

s.

Since ϕ6m preserves the Ks-conjugacy class of H , for every 1 ≤ k ≤ l there exists
a word wk such that

ϕ6m(yk,0)K
′

s = wk(y1,0, . . . , yl,0)K
′

s.

Thus,

ϕ6m(yk,1)K
′

s = wk(y1,1, . . . , yl,1)K
′

s

and

(1) ϕ6m(yk,0y
−1
k,1)K

′

s = wk(y1,0y
−1
1,1, . . . , yl,0y

−1
l,1 )K

′

s.

Recall that we defined dk := yk,0y
−1
k,1K

′

s. We also showed that Ks/K
′

s is a Z[ξs]-
module and that d0, . . . , dn−1 freely generates a free Z[ξs]-submodule LsK

′

s/K
′

s of
Ks/K

′

s. Equation 1 shows that ϕ6m preserves the Z-submodule generated by d1, . . . , dl.
By the definition of ρs, the image ρs(ϕ

6m) ∈ GLn−1(Z[ξs]) represents the action of
ϕ6m on LsK

′

s/K
′

s. This implies that at least one of the following statements holds:

• l < n− 1 and the characteristic polynomial of ρ2(ϕ
6m) is reducible.

• l = n− 1 and ρ3(ϕ
6m) belongs to GLn−1(Z). In particular, the characteristic

polynomial of ρ3(ϕ
6m) belongs to Z[t].4

There are only sn − 1 normal subgroups of Fn of index s. The homomorphism ρs
depends on the subgroupKs and on the free basis d1, . . . , dn−1 of LsK

′

s/K
′

s. However,
the characteristic polynomial of ρs(ϕ

6m) does not depend on the choice of the basis
so it is enough to take for each subgroup of index s just one homomorphism. �

In order to get a similar result for non-hyperbolic elements we will need the
following theorem:

Theorem 4.2 (Bestvina-Handel [BH]). If ϕ ∈ Aut(Fn) is iwip but not hyperbolic

then there is m ≥ 1 such that ϕm is induced by an automorphism of a compact

surface M with one boundary component S.

Proposition 4.3. There are homomorphisms ρ1, . . . , ρ2n−1 : Tn → GLn−1(Z) such

that:

1. For every 1 ≤ i ≤ 2n − 1, ρi(Tn) is of finite index in GLn−1(Z).
2. If ϕ ∈ Tn is iwip but not hyperbolic then there are m ≥ 1 and 1 ≤ i ≤ 2n − 1

such that the characteristic polynomial of ρi(ϕ
m) is reducible.

4For every ψ ∈ Tn, ρ2(ψ) ∈ GLn−1(Z) so we do not gain any new information on ρ2(ϕ
6m) if

l = n− 1.
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Proof. We use the notation of the previous section. Let ϕ ∈ Tn be iwip but not
hyperbolic. Theorem 4.2 implies that for some m ≥ 1, the automorphism ϕm is in-
duced by an automorphism of a compact surface M with one boundary component
S. Thus, ϕm sends the homotopic class of S to itself or to its inverse, so ϕ2m sends
the homotopic class of S to itself. We divide the proof into two cases.
First case: M is orientable. In that case n is even and there exists a free
basis x1, . . . , xn of Fn such that ϕ2m ∈ Tn preserves the Fn-conjugacy class of
[x1, x2] · · · [xn−1, xn]. Then, ϕ

4m ∈ Tn preservesK2-conjugacy class of [x1, x2] · · · [xn−1, xn].
In particular as x1, . . . , xn−2 ∈ K2 and dn−1 = [xn−1, xn]K

′

2, ρ2(ϕ
4m)(dn−1) = dn−1.

Thus, the characteristic polynomial of ρ2(ϕ
4m) is reducible.

Second case: M is not orientable. There exists a free basis x1, . . . , xn of Fn

such that ϕ2m ∈ Tn preserves the Fn-conjugacy class of of x21 · · ·x
2
n. Then, ϕ

4m ∈ Tn

preserves the K2-conjugacy class of x21 · · ·x
2
n. It also preserves the K2-conjugacy

class of x−1
n (x21 · · ·x

2
n)xn. This implies that ρ2(ϕ

4m)(d2) = d2 where d := d1 · · · dn−1,
so the characteristic polynomial of ρ2(ϕ

4m) is reducible.
As in the proof of Proposition 4.1 the irreducibility of ρ2(ϕ

4m) depends only on
the subgroup K2 and not on the specific basis of Fn. Thus, the number of required
homomorphisms follows from the fact that the are 2n − 1 subgroups of index 2. �

By using the large sieve method, Rivin proved:

Proposition 4.4 (Rivin, [Ri1]). Fix n ≥ 2 and let Γ be a subgroup of finite index

in GLn(Z). For every g ∈ Γ let fg be the characteristic polynomial of g. Then, the

set

{g ∈ Γ | ∃m ≥ 1 such that fgmis reducible}

is exponentially small.

We can now conclude:

Theorem 4.5. Let n ≥ 3 and denote Tn := ker(Aut(Fn) → Aut(Zn)). Then the

set Z consisting the elements of Tn which are either non-iwip or non-hyperbolic is

exponentially small.

Proof. This follows from Propositions 4.1 and 4.3, using Propositions 2.4 and 4.4. �

References

[BH] M. Bestvina and M. Handel, Train tracks and automorphisms of free groups. Ann. of Math.
(2) 135 (1992), no. 1, 1-51.

[GL1] F. Grunewald and A. Lubotzky, Linear representations of the automorphism group of a free

group. Geom. Funct. Anal. 18 (2009), no. 5, 1564-1608.
[KM] I. Kapovich and M. Lustig, Ping-pong and outer space. J. Topol. Anal. 2 (2010), no. 2,

173-201.
[Ko] E. Kowalski, The Large Sieve and Its Applications, Arithmetic geometry, random walks

and discrete groups. Cambridge Tracts in Mathematics, 175. Cambridge University Press,
Cambridge, 2008. xxii+293 pp.

[Ma] J. Maher, Random walks on the mapping class group, arXiv:math/0604433.

http://arxiv.org/abs/math/0604433


8 ALEXANDER LUBOTZKY AND CHEN MEIRI

[MS] J. Malestein and J. Souto, On genericity of pseudo-Anosovs in the Torelli group.

arXiv:1102.0601.
[LuMe1] A. Lubotzky and C. Meiri, Sieve methods in group theory I: Powers in Linear groups.

preprint.
[LuMe2] A. Lubotzky, C. Meiri, Sieve methods in group theory II: The Mapping Class Group.

arXiv:1104.2450.
[Ri1] I. Rivin, Walks on groups, counting reducible matrices, polynomials, and surface and free

group automorphisms, Duke Math. J. 142 (2008), no. 2, 353–379.
[Ri2] I. Rivin, Zariski density and genericity. Int. Math. Res. Not. IMRN 2010, no. 19, 3649–3657.

Einstein Institute of Mathematics, Hebrew University, Jerusalem 90914, Israel

E-mail address : alexlub@math.huji.ac.il, chen.meiri@mail.huji.ac.il

http://arxiv.org/abs/1102.0601
http://arxiv.org/abs/1104.2450

	1. Introduction
	2. Characteristic polynomials
	3. Grunewald-Lubotzky Theorem
	4. Iwip and hyperbolic elements
	References

